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Abstract
Recently, deep neural networks (DNNs) have signifi-
cantly improved the performance of acoustic modeling in
statistical parametric speech synthesis (SPSS). However,
in current implementations, when training a DNN-based
speech synthesis system, phonetic transcripts are required
to be aligned with the corresponding speech frames to
obtain the phonetic segmentation, called phoneme align-
ment. Such an alignment is usually obtained by forced
alignment based on hidden Markov models (HMMs)
since manual alignment is labor-intensive and time-
consuming. In this work, we study the impact of
phoneme alignment on the DNN-based speech synthe-
sis system. Specifically, we compare the performances
of different DNN-based speech synthesis systems, which
use manual alignment and HMM-based forced alignment
from three types of labels: HMM mono-phone, tri-phone
and full-context. Objective and subjective evaluations
are conducted in term of the naturalness of synthesized
speech to compare the performances of different align-
ments.
Index Terms: Speech synthesis, acoustic modeling, deep
neural networks, phoneme alignment

1. Introduction
There have been many efforts dedicated to the syn-
thesis of natural-sounding speech. As a popular cate-
gory of methods, statistical parametric speech synthesis
(SPSS) has been advanced significantly recently. SPSS
offers greater flexibility and controllability than the unit-
selection or waveform-concatenation method [1]. These
abilities mainly come from the flexibilities of the underly-
ing small-footprint acoustic models, which map linguis-
tic features to acoustic speech parameters for waveform
generation.

As an elegant sequential SPSS model, hidden Markov
models (HMMs) have dominated the acoustic modeling
in the past decade [2]. In a typical HMM system, a multi-
space probability distribution HMM (MSD-HMM) [3] is
used to model the spectrum, pitch and duration simul-
taneously at the state-level [4]. A decision tree based
context clustering strategy is adopted to handle unseen

linguistic features when mapping from the rich-context
linguistic features to the acoustic features. As a result,
HMM parameters are shared across the clustered groups
of linguistic contexts.

Despite years of efforts, the naturalness of the HMM-
synthesized speech is still unable to compete with good
unit selection synthesizers. A major factor that de-
grades the naturalness is the accuracy of the acous-
tic models [1]. Recently, neural networks have re-
emerged as a powerful tool for acoustic modeling in
SPSS [5, 6, 7, 8, 9, 10, 11, 12], following the success
of deep learning in speech recognition [13] and many
other machine learning tasks. Through a deep neural net-
work (DNN), a frame-level regression model is directly
learned from linguistic labels to acoustic features with-
out a decision tree. DNN-based acoustic models provide
an efficient and distributed representation of complex de-
pendencies between linguistic and acoustic features [5].
A number of studies have demonstrated that DNNs are
able to achieve significantly better performances than
decision-tree based HMMs [5, 6, 12]. Some network
variants, eg., DNNs with multi-task learning and stacked
bottleneck features [7], deep mixture density networks
(MDN) [8], long short-term memory (LSTM) recurrent
network [9] and its simplified versions [10], have shown
their potential to produce more natural-sounding synthe-
sized speech. A very recent study [12] has confirmed that
two critical factors, replacing decision trees with DNNs
and moving from state-level to frame-level predictions,
contribute much to the improvement of the naturalness of
a DNN system.

Different from HMM-based synthesis, which could
start without phoneme alignment, training a DNN-based
acoustic modeling needs phoneme alignment or frame-
level phonetic segmentation information (at least in cur-
rent implementations). As Watts et al. pointed out [12],
frame-level prediction secures the performance gain of
a DNN-based acoustic model. However, how does the
phoneme alignment affect the performance of DNN-
based synthesis is still unknown. Even though the
phoneme alignment can be obtained manually, it is not
practical for large corpora. On the other hand, HMM-
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based model, which does not require phoneme alignment
to train, may provide an alternative “cheap” way. To this
end, we look into the impact of phoneme alignment on
the training of DNN-based acoustic models in this pa-
per. We use the manual alignment to benchmark the
performance and choose three forced alignment methods
for comparison: HMM mono-phone, tri-phone and full-
context models.

2. Related works
In some TTS systems, especially for commercial syn-
thesizers, manual alignment has been employed since it
is considered as most reliable and precise way to get
the frame-level phonetic segmentation information [14].
However, manual alignment is time-consuming and
labor-intensive [15, 16]. It is not practical for large cor-
pora. Instead, HMM-based forcing alignment has been
pointed out as the most practical method for automatic
phonetic segmentation.

Several studies have been carried out in investigat-
ing the performance of different forcing alignment meth-
ods [17, 18, 19, 20]. According to their results, a sim-
ple forcing alignment model (e.g., HMM mono-phone
model) is able to achieve similar or even better perfor-
mance than that of a more complex model (e.g., HMM
tri-phone model or HMM full-context model). Some pa-
pers have focused on the improvmment of alignment ac-
curacy [21, 22]. On the other hand, the impact of align-
ment on the unit-selection synthesis has also been stud-
ied [23, 14]. In [23], a regression tree based on phonetic
boundaries was used to conduct boundary specific correc-
tion to refine the HMM-based segmentation. Alignment
accuracy comparable to manual alignment was thus ob-
tained. However, this study has shown that the improve-
ment on alignment does not carry obvious benefits to the
synthesis performances. In [14], Chu et al. conducted
manual check on the forced alignment results and exper-
iments showed improvements on the naturalness of syn-
thesized speech.

Nevertheless, improving the phonetic segmentation
performance is out of the scope of this paper. In this pa-
per, we are interested in investigating the impact of dif-
ferent alignment methods (manual and forced alignment)
on the performance of DNN-based speech synthesis.

3. Phonetic Alignment
3.1. Manual Alignment

Usually, it needs several language experts continuously
working several days to get the manual alignment for a
sizable TTS corpus [19]. Moreover, in some cases, the
alignment results are different across the experts. Thus,
in order to ensure that the manual alignment is reliable,
the labeling difference between experts should be smaller
than a certain threshold. In this study, the manual align-

ment of our corpus is obtained in this way and three lan-
guage experts are paid to do the phonetic segmentation.

3.2. Forcing Alignment

Forcing alignment methods have been widely adopted.
It allows the alignment to be both consistent and repro-
ducible at a very low cost. One of the most frequently
used approaches for forcing alignment is based on HMM
using the HTK toolkit [24]. A set of phonetic HMMs are
first trained using a training set. Then with the phoneme
transcriptions and the corresponding wave files provided,
a Viterbi search algorithm is used for the alignment and
transitions between different HMM models are then con-
sidered as phoneme boundaries.

In this study, three versions of forcing alignment
methods are investigated from the following HMM mod-
els:

• Mono Nmix: mono-phone HMMs with N Gaus-
sian mixtures per state;

• Tri Nmix: tri-phone HMMs with N Gaussian mix-
tures per state;

• Full Nmix, full-context HMMs 1 with N Gaussian
mixtures per state.

We investigate the impact of context dependencies
and the number of Gaussian mixtures on the performance
of the HMM-based forcing alignment. We first train a
set of mono-phone HMMs with five-state, left-to-right
model topology, where each state is modeled by a single
Gaussian, diagonal covariance output distribution. For
tri-phone and full-context models, the decision tree based
context clustering is performed using their corresponding
question set. An unseen model is trained in case that the
development or testing set contains new phonetic models
that the training corpus does not contain. This is achieved
by assigning class average values to non-existing ones.
The number of Gaussian mixtures in the three sets of
HMMs is set from 1 to 32 to test their influences.

4. Experimental Setups
4.1. Corpus

A phonetically-balanced corpus with 5,470 Chinese sen-
tences (3-5 seconds per sentence) spoken by a native fe-
male speaker in neutral style was used in our experiments.
The corpus had phonetic transcripts with manually la-
beled phoneme boundaries. We randomly selected 5,000
sentences for model training, 270 for development and
200 for testing in the experiments. Speech waveforms are
sampled at 16kHz, windowed by a 25ms window shifted

1The full label [25] includes quin-phone, the position of phone, syl-
lable and word in phrase and sentence, the length of word and phrase,
stress of syllable, TOBI and POS of word.
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Figure 1: The phoneme alignment results for a sentence in the training set.

every 5ms in the acoustic feature extraction and model-
ing.

4.2. HMM-based forcing Alignment

In the HMM-based forcing alignment, the feature vector
for model training is composed of 18 dimensional Mel-
frequency cepstral coefficients (MFCCs), normalized log
energy, as well as their delta and delta-delta components
(57-dimension in total). Please note that we only use
5,000 training sentences to train the HMM models for
forcing alignment and then use the trained models to
align all the 5,470 sentences. Phoneme alignment was
carried out according to the methods described in Sec-
tion 3.2.

4.3. DNN Model Training

We train speaker-dependent DNN acoustic models using
different phoneme alignment results to investigate their
influences on a DNN synthesizer. The input feature vec-
tor of the network contains 657 dimensions, where 596
dimensions are binary features for categorical linguis-
tic contexts, 58 dimensions are numerical linguistic con-
texts and the rest 3 dimensions are numerical features
that inlcude the frame positions to the start and the end
of the current phoneme and the frame numbers. The
output acoustic parameters include 41-dimensional LSPs
and linearly interpolated F0 in log-scale with their delta,
delta-delta features, plus a voicing/unvoicing (V/UV)
flag, totally 127 dimensions. In the training, 80% of
the silence frames are removed from the training data
to avoid DNN over-learning the silence label. The in-
put linguistic features are normalized to a fixed range
[0.01 0.99] and the output acoustic features are normal-
ized by mean-variance normalization (MVN). The acous-

tic model is a feed-forward DNN with 6 hidden layers
of 1024 nodes in each layer. The tanh and linear acti-
vation functions are used for the hidden layers and the
output layer, respectively. The hyper-parameters, such as
learning rate and momentum, are tuned on the develop-
ment set. The DNN training procedure is implemented in
Python using the Theano toolkit [26]. Finally, the wave-
forms are synthesized by an LPC synthesizer using the
predicted speech parameters. We investigate the impact
from different phoneme alignments by changing the in-
put vector of the DNN, i.e., the last 3 dimensions of the
network input vector that reflect different phoneme align-
ment results.

5. Experimental Results

5.1. Phoneme Alignment Accuracy

Figure 1 shows the phoneme alignment results from dif-
ferent methods for a sentence in the corpus. We can
clearly see the difference among various alignment meth-
ods. In the experiments, we first compare the phoneme
alignment accuracy of different alignment methods. If
the distance from a forced alignment phoneme boundary
to it’s manual reference is smaller than a certain tolerance
threshold, it is counted as a correct one. The accuracy
scores (from 10 to 40ms threshold) on the training set are
reported in Table 1.

From Table 1, we can see that the best alignment
results are achieved from different numbers of Gaus-
sian mixtures for different tolerance windows. We no-
tice that for smaller tolerance windows (10 and 20ms),
HMMs with 4 Gaussian mixtures achieve the highest ac-
curacy for mono-phone and tri-phone while HMMs with
2 Gaussian mixtures achieve the highest accuracy for full-
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Table 1: Alignment accuracies on the training set with
different tolerance values (10, 20, 30, 40 ms) using mono-
phone, tri-phone and full-context HMMs with different
number of Gaussian mixtures per state.

Model Set 10 20 30 40

Mono 1mix 30.02 57.53 76.48 86.70
Mono 2mix 32.96 59.13 76.34 86.94
Mono 4mix 33.11 59.26 76.43 87.24
Mono 8mix 32.81 58.50 75.75 86.92
Mono 16mix 32.37 57.21 74.79 86.16
Mono 32mix 31.59 55.87 73.89 85.52

Tri 1mix 29.97 56.14 73.74 84.31
Tri 2mix 30.46 56.63 73.15 83.85
Tri 4mix 30.53 56.73 72.71 83.60
Tri 8mix 30.44 56.67 72.40 83.32
Tri 16mix 30.36 56.56 72.23 83.21
Tri 32mix 30.19 56.39 72.07 83.17
Full 1mix 32.31 59.14 77.57 87.53
Full 2mix 32.52 59.31 75.60 86.51
Full 4mix 31.90 58.67 75.06 85.79
Full 8mix 29.55 56.81 72.81 83.48
Full 16mix 26.50 53.79 70.55 81.31
Full 32mix 23.96 49.96 63.70 78.38

context. In general, tri-phone models are not as good as
mono-phone. This result is consistent with the conclusion
drawn in [17]: the segmentation produced by context-
dependent HMMs tend to be less precise than the ones
produced by context-independent HMMs. A theoreti-
cal explanation for this behavior can be found in [27].
As another set of context-dependent models, full-context
HMMs, achieve segmentation results as good as mono-
phones. The accuracy may come from the prosodic infor-
mation provided in the full-context labels, as explained
in [19].

5.2. Speech Synthesis Objective Evaluation

We choose Mono 4mix, Tri 4mix and Full 1mix for the
evaluation of DNN-based speech synthesis. We first anal-
yse the impact of different types of phoneme alignments
on the DNN training using the testing set with manual
alignment (i.e., the mismatched case). Results are shown
in Table 2. The results show that there is a clear gap be-
tween the forced alignment labels (Mono 4mix, Tri 4mix
and Full 1mix) and the manual alignment labels (Man-
ual). This is because of the phoneme alignment mismatch
between the training and synthesis stages. The mono-
phone with 4 Gaussian mixtures obtains lowest LSD, F0
and UV prediction errors among the three systems using
forced alignment to train the DNN model.

We then analyse the 4 different kind of DNN syn-
thesizers using their corresponding phoneme alignment
labels respectively in the testing set (i.e., the matched
case). The results are presented in Table 3. The results
show that the gaps between the forced alignment labels
(Mono 4mix, Tri 4mix and Full 1mix) and manual align-
ment labels (Manual) are not salient any more. But we
should notice that the acoustic features produced by the
different phoneme alignments may have different frame

Table 2: Log-spectral distance (LSD), root mean squared
errors (RMSEs) of F0, voiced/unvoiced error rates
(V/UV) on the testing set with manual alignment for 4
different forced alignment trained DNNs (the mismatched
case)

Model Sets LSD (dB) F0 RMSE (Hz) V/UV (%)
Manual 2.2666 26.670 8.085

Mono 4mix 2.6076 28.142 12.511
Tri 4mix 2.6368 28.345 13.289
Full 1mix 2.6357 28.484 12.864

numbers, thus the numbers in Table 3 are not directly
comparable.

Table 3: Log-spectral distance (LSD), root mean squared
errors (RMSEs) of F0, voiced/unvoiced error rates
(V/UV) on the testing set with their corresponding
phoneme alignment for 4 different forced alignment
trained DNNs (the matched case).

Model Sets LSD (dB) F0 RMSE (Hz) V/UV (%)
Manual 2.2666 26.670 8.085

Mono 4mix 2.2725 27.228 8.599
Tri 4mix 2.2716 26.667 8.355
Full 1mix 2.2801 27.238 8.304

5.3. Speech Synthesis Subjective Evaluation

In order to see if the human perception is consistent with
the objective evaluation, we conduct two subjective ex-
periments to assess the naturalness of the synthesized
speech using a MUSHRA (MUltiple Stimuli with Hid-
den Reference and Anchor) test [28]. In each experiment,
subjects are asked to rate, using a scale from 0 (com-
pletely bad) to 100 (completely natural), on 20 sets of
stimuli randomly chosen from the testing set. Each set
of stimuli represents the same sentence, but synthesized
using the four different DNN systems and a matching
copy-synthesized one as hidden reference (i.e., the an-
chor). Stimuli are ordered randomly and presented with-
out labels. Subjects are instructed to rate the hidden ref-
erence as completely natural, fixing the high end of the
scale. No explicit lower anchor is used, since the syn-
thetic speech stimuli themselves are sufficiently different
from the copy-synthesized speech to act as implicit an-
chors. A group of 30 native Chinese listeners participated
in the test. In total, 600 sets of parallel rating are obtained
for each experiment.

The distributions of subjective ratings on the test-
ing set using manual alignment for 4 different phoneme
alignment trained DNNs are shown in Figure 2, while
the distributions of subjective ratings on the testing set
using their corresponding matched alignment for 4 dif-
ferent phoneme alignment trained DNNs are shown in
Figure 3. Box edges are at 25% and 75% quantiles.
Red line is the median and green dashed line is the
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mean. From Figure 2, it is clear that the copy-synthesized
speech is judged as the most natural one among all the
methods, despite the variation from different sentences
and different subjects. The synthesis system trained in
manual alignment gets higher rating than the other three
types of synthesis systems trained in forced alignments.
Paired-sample t-test between all the 5 systems are per-
formed, and the analysis shows no significant differences
between the groups {Mono 4mix, Full 1mix} at the 5%
significance level. From Figure 3, except that the copy-
synthesized speech is still judged as the most natural one
among all the methods, listeners nearly cannot tell the
differences between the four synthesis systems. Paired-
sample t-test shows no significant differences between
the groups {Manual, Mono 4mix}, {Manual, Tri 4mix},
{Mono 4mix, Tri 4mix}, {Mono 4mix, Full 1mix} at
the 5% significance level.
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Figure 2: MUSHRA test results on the testing set us-
ing manual alignment for 4 different phoneme alignment
trained DNNs.

In summary, we can draw the conclusion that the
forced alignments are as good as manual alignments for a
DNN-based speech synthesis system when the alignment
used in training stage and synthesis stage are matched,
i.e., from the same alignment approach.

6. Conclusions
In this paper, we studied the impact of phoneme align-
ment to the performance of DNN-based speech synthesis.
We first compared the alignment accuracy of three HMM-
based forcing alignment methods with the manual align-
ment as the reference. Among the three forcing alignment
methods, mono-phone model, which is the simplest, is
able to achieve similar or even better performance than
that of more complex models such as tri-phone and full-
context models. We then conducted two groups of speech
synthesis experiments to assess their impact on the natu-
ralness of DNN-based speech synthesis. Results show
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Figure 3: MUSHRA test results on the testing set using
their corresponding phoneme alignment for 4 different
phoneme alignment trained DNNs.

that simple mono-phone HMM-based forced alignment is
comparable to manual alignment for DNN speech synthe-
sis performance when the alignment used in the training
and synthesis stages are matched.
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