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Abstract—DNN/i-vectors have achieved state-of-the-art per-
formance in text-independent speaker verification systems. For
such systems, the UBM posteriors are replaced with the DNN
posteriors when training the i-vector extractor to better model the
phonetic space. However, the DNN/i-vector systems have limited
success on text-dependent speaker verification systems as the
lexical variabilities, which are important for such applications,
are suppressed in the utterance-level i-vectors. In this paper,
we propose a segmental DNN/i-vector approach for the digit-
prompted speaker verification task. Specifically, we segment the
utterance into digits and model each digit using an individual
DNN/i-vector system. By modeling the variability for each digit
independently, we can focus more on the speaker characteristics
for each digit. To take into consideration the uncertainties in the
DNN posteriors, we propose a confidence measure based weight-
ing method. On the RSR2015 dataset, the proposed approach
yields an equal error rate of 3.44%, compared to 5.76% of the
baseline utterance-level DNN/i-vector system and 4.54% of the
joint factor analysis (JFA) system.

I. INTRODUCTION

There are two major categories of the speaker verification
systems, namely text-independent (TI) and the text-dependent
(TD). Under the former circumstance, the user is free to
speak anything during verification. On the other hand, for
TD systems, the user is required to speak the passphrase in
each verification. Various TI speaker recognition schemes were
proposed under the assumption that the speaker characteristic
is independent of the spoken content when the utterances are
sufficiently long [1], such as GMM/UBM [2], joint factor
analysis (JFA) [3] and the total variability model [4]. The
i-vectors [4] derived from the total variability model have
been widely used in the TI speaker verification systems and
shown to be extremely effective. With the success in speech
recognition [5], deep neural networks (DNNs) have also been
used in the i-vector framework by replacing the universal
background model (UBM) posteriors with the DNN senone
posteriors [6] [7] leading to state-of-the-art performance on
several benchmarking tasks. The success of such systems
(DNN/i-vector) are mainly attributed to the better phonetic
space modeling ability of the DNNs.

Although i-vectors have become state-of-the-art technique
for TI speaker recognition, they have very limited success
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for the TD systems because the lexical variabilities which are
important for TD systems are suppressed in the utterance-level
i-vectors. For TD systems, the passphrase is often in very short
duration, where speaker characteristic has shown significant
dependency on the lexical content [8, 9, 10]. Therefore, it is
essential for TD speaker verification systems to model both
the speaker variabilities and the lexical variabilities of the
passphrase. In [8], an HMM based approach called HiLAM
was proposed, where each speaker-passphrase model was
trained as an HMM via adaptation to model the speaker and
the passphrase jointly.

As a variant of the TD system, text-prompted speaker
verification is more challenging in which user is prompted
to provide utterance of random text every time the system is
used. Thus we can prevent playback attack. The prompted texts
could be random sequences of keywords from a constrained
set (e.g., digits). In this paper, we aim to investigate the
digit-prompted task on the publicly available RSR2015 data
set [8]. A combination of phone adaptation and speaker
adaptation was proposed in [11] for text-variable speaker
recognition. In the same vein, a phoneme adaption scheme [12]
was used within the JFA framework for the digit-prompted
speaker verification task. The authors use local vector models
a segment in an utterance, while a global vector models the
whole utterance. Maximum a posteriori (MAP) adaptation
was applied to a phonetic independent UBM to model the
speaker and digits jointly. On the same digit prompted task, the
authors in [13] advocate the use of HMM for joint modeling
of speaker characteristic and lexical content and develop a
scoring scheme to differentiate the score contributions of the
lexical and speaker components. In [9], the authors show
that an i-vector can be decomposed into segments of local
variability vectors, each corresponding to a monophone, where
each local vector models session variability given the phonetic
context.

In this paper, we investigate the DNN/i-vector approach for
digit-prompted speaker verification. Inspired by the way of
modeling on a smaller granularity acoustic unit in [9] and [12],
we model the speaker variabilities on the digit level consid-
ering the suppression of lexical components in utterance level
i-vectors and the lack of data in phone level local i-vectors.
In practice, we segment the training utterances into digits by
forced-alignment from an automatic speech recognizer and
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build a DNN/i-vector system for each single digit individually.
For verification, we propose a confidence measure(CM) based
i-vector weighting scheme to compensate the uncertainty of
the ASR for segmenting the digits. Experiments show that
our digit local i-vector achieves better results in this task than
the previous work.

II. DNN/I-VECTORS EXTRACTION

A. DNN/HMM system for digit segmentation

To train the digit level DNN/i-vector systems, we need the
training data for each individual digit. To this end, a hybrid
DNN/HMM system [14] used for speech recognition was
trained from the raw unsegmented utterances. Specifically, in
our digit-prompted task, it is natural to train a simple digit-
string recognition system, where each digit is modeled as
a J-state HMM and the HMM states for all the digits (10
digits in this paper) are used as the targets for the hybrid
DNN/HMM system. The hybrid system is then used to do
the forced alignment on the training utterances to segment
them into digits. Moreover, the hybrid system can also produce
the DNN posteriors for training the DNN/I-vector systems for
each individual digit detailed in the following section.

B. I-vector systems from DNN posteriors

A standard GMM-UBM i-vector system [4] is used as one
of the baselines in our experiments. Given an utterance, the
speaker and channel-dependent GMM supervector is written
as follows:

M = m+ ωT (1)

where M is the mean supervector, m is the mean supervector
of UBM. The matrix T is the total variability matrix projecting
mean supervector to obtain i-vectors ω . In this model, the t-th
speech frame xi

t from the i-th speech segment is assumed to
be generated by the following distribution:

xi
t ∼

∑
k

γi
ktN(µk + Tkω,

∑
k

) (2)

µk and
∑

k are the mean and covariance of the k-th Gaussian,
and γi

kt are the alignments of xi
t . In general, we represent

the alignments by the posterior of the k-th Gaussian, given by
γi
kt = p(k|xi

t) . The zeroth and first order sufficient statistics
used to train the subspace T and extract the i-vector ω can be
computed using the posterior probabilities of the classes.

Traditionally, the Gaussian in UBM define the classes k
in (2) and the posteriors for the classes are computed from
the likelihoods of the Gaussians using the Bayes rule [4]. In
the DNN/i-vector framework [6] [7], a DNN trained for ASR
to discriminate the senones (the HMM states in our system)
is used to define the classes k instead of the Gaussian in a
GMM. The means and covariance of the senone k, which is
analogous to a Gaussian component in the traditional UBM,
can be computed as:

µi
k =

∑
t γ

i
ktx

i
t∑

t γ
i
kt

(3)

Σi
k =

∑
t γ

i
ktx

i
tx

i
t
T∑

t γ
i
kt
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kµ

i
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T
(4)

where the alignment is represented by the posterior of the
DNN corresponding to output unit k for frame xi

t . This set
of means and covariance are used to compute statistics used
in the i-vector extraction. The rest of the process remains the
same as in the conventional method, except that the posteriors
are always computed using the DNN.

III. SEGMENTAL I-VECTORS FOR
DIGIT-PROMPTED SPEAKER VERIFICATION

In either a GMM/i-vector system or a DNN/i-vector system,
the i-vector is extracted at the utterance level. That is, the
statistics computed for extracting i-vector are accumulated
on all the frames of the utterance. If directly applying such
utterance level i-vectors to digit-prompted speaker verification,
the text constraints imposed on the speaker are not fully
exploited. In [9], the authors develop a phone-centric local
vector, but it may suffer from the lack of phoneme data. And
co-articulation may have influence in local i-vectors modeling.
In view of these questions, we model the total variabilities
using a finer granularity at the digit level rather than the
sentence level. More specifically, we segment the training
utterances into digits and a DNN/i-vector system is built for
each single digit. We call it segmental DNN/i-vector approach.

A. Digit i-vectors modeling

In practice, we segment all the training data into digits
using forced alignment from the ASR system and gather the
segments into several groups by the same digit label. A DNN/i-
vector system is built for each single digit group. By modeling
the variability for each digit independently, we can focus more
on the speaker characteristics for each digit. We believe that
the T-matrix trained with single digit data can model not only
speaker variance but also digit content.

Each of the enrollment utterances is a sequence of randomly
generated ten numbers covering all digits from zero to nine.
We then extract digit i-vectors for all the segments with the
corresponding DNN/i-vector model and average the i-vectors
of all the segments corresponding to the same digit. Thus we
can get a total of N (usually N=10) enrollment digit i-vectors
u1, u2, ...un for a speaker.

During verification, the test digit i-vectors v1; v2; ...vn cor-
responding to the n randomly generated digits of the test
utterance can also be extracted in the same way. Finally we
splice the test digit local i-vectors into a final test i-vector
ωtest from left to right in the prompt sequence (e.g.0, 1, n)

ωtest = [v1; v2; ...vn] (5)

The enrollment i-vector ωenroll is also produced by splicing
the enrollment digit i-vectors according to the same sequence:

ωenroll = [u1; u2; ...un] (6)

The scores are then computed as the cosine distance between
the enrollment i-vector ωenroll and test i-vector ωtest .
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Fig. 1. Enrollment and testing for the segmental DNN/I-Vector approach.

Fig.1 shows the flow diagram of our system. Modeling at
the digit level brings obvious benefits. On the one hand, pa-
rameters size of models can be greatly reduced since the digit-
level i-vector usually has a smaller dimension. On the other
hand, model simplification directly results in the compression
of computation and space complexity. Despite the number of
i-vectors we need to extract increases from one to the number
of digits containing in test utterance, the extra computation
and storage do not matter if we do the extractions in parallel.

B. Backend models

1) Confidence measure based i-vector weighting: After
extracting all the digit i-vectors for a test utterance, we
concatenate them into one vector from left to right according
to the prompt sequence as described in Section A. However,
the ASR system used to segment the digits cannot guarantee
perfect frame boundary for all the digits. It is desirable to have
an independent measure on how good the hypothesis is relative
to the ground truth. To take into account the uncertainties in the
DNN posteriors, confidence measure (CM) [15] [16] is used
to weight the digit i-vectors before concatenation. Specifically,
we compute the confidence measure by posterior probability.

The typical ASR algorithm uses the maximum a posteriori
(MAP) decision rule to find the most likely sequence of
words Ŵ which achieves the maximum posterior probabil-

ity p(W |X) given any acoustic observation X by Ŵ =
argmaxW p(W |X) = argmaxW p(W )p(X|W ). After being
normalized by p(X), the posterior probability p(W |X) can
serve as a confidence measure since it represents the absolute
quantitative measure of the match between X and W .

An effective way to normalize p(X) is calculating through
the word lattice X generated by an ASR decoder for the
utterance. The word lattice is represented as a directed, acyclic,
weighted graph. Each arc is labeled by we

s , representing a
hypothesized word w attached to the arc, which starts at frame
s and ends at e. Given a lattice, the posterior probability of
any arc a through a complete path C is calculated as a ratio
between the total probability of all complete paths passing
through the arc a to that of all complete paths in X :

p(a|X ) =

∑
C⊂X ,a∈Cp(C|X ))∑

C⊂X p(C|X ))
(7)

The posterior probability p(a|X ) can be directly used as the
confidence measure cword for the recognized word. To further
take into account other arcs which have the same word id
w but slightly different s and e, when calculating confidence
measure for the word w in an arc, we sum over all arcs in
word graph which have the same word id and intersect with
the current arc in the time domain.

In this paper, we use the CM calculated for the digits to
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weight the digit i-vectors while splicing into the test i-vector:

ωtest = [c1v1, c2v2, ...cnvn] (8)

where the c1, ...cn are the confidence measures for digits
1, 2...n containing in the test utterance and v1, ...vn are the
test digit local i-vectors. The enrollment i-vector remains
unchanged when computing the cosine distance. In other
words, the CM weight for enrollment digit local i-vectors is
always regarded as one.

2) Dimension reduction and score normalization: In the i-
vector framework, length normalization is usually used, simply
by projecting the vectors onto the unit-sphere without pre-
whitening. Furthermore, linear discriminant analysis (LDA)
is often used for dimension reduction [4]. The LDA aims at
maximizing between-class variance and minimizing intra-class
variance. In this paper, we train ten LDA matrices for the ten
digits. Each class is made up of all the segments to the target
number of a single speaker. LDA dimension reduction is used
prior to any other processing of the i-vectors, so the new test
i-vector is written as:

ωtest = [c1AT
1 v1, c2AT

2 v2, ...cnAT
nvn] (9)

where the An is the LDA projection matrix of the target digit.
The enrollment digit i-vectors are transformed in the same
way. In addition to the confidence measure based backend
method, score normalization is also applied for a better s-
core distribution. In this paper we use test-dependent zero
normalization (TZNorm) [17] for score normalization just like
previous work in [12].

IV. EXPERIMENTS

A. Dataset

We use the RSR2015 part 3 dataset [8], which is devoted
to speaker verification using randomly-prompted English digit
strings, to evaluate the proposed approach. The dataset consists
of 300 speakers (157 males and 143 females) with ages
between 17 and 42. Each speaker contains 9 sessions and
13 utterances per session. According to the protocol in [8],
session 1, 4 and 7 recorded with the same handset are chosen
for enrollment so that each speaker contributes three different
speaker models. The speaker model is enrolled with three
10-digit utterances. The test utterance from the remaining
6 sessions contains a random 5-digit string. For all of the
utterances, the sequence of digits is known to the system
and the speaker verification system can use it directly. Since
the proposed method is aiming at speaker verification, the
experiment results are provided by the target-correct trials and
the non-target from the imposter-correct trials. The validity of
the lexical content is judged by forced alignment.

B. Experimental setup

The RSR2015 Part 3 training and development sets are
used to train the DNN and UBM models. We first train a
GMM/HMM model to perform the force alignment to derive
the digit state labels for the following DNN training. For the
GMM/HMM training, since the corpus contains only ten digits

from zero to nine, digit-based HMM models are adopted.
Each digit is modeled by an HMM with 9 states. The input
features are the standard 20-dimensional MFCC with its first
and second derivatives, yielding a dimension of 60. No voice
activity detection (VAD) is applied in all the systems. Using
the forced-alignments from the GMM/HMM system, we train
a five-hidden-layer feed-forward DNN with 9 frames context
input (4+1+4) to predict totally 103 HMM states. The number
of nodes in each hidden layer is set to 240. The Kaldi
toolkit [18] is used for model training. In the GMMUBM i-
vector baseline system, we train a gender-independent UBM
of 512 mixture and T matrix of 400 dimensions with all the
background set data. For comparison, a segmental GMM/i-
vector system is also built with UBM of 64 mixtures and T
matrix of 40 dimensions, for each digit using the segmented
data. In our segmental DNN/i-vector system, the size of T
matrices are also set to 40. Under these configurations, we can
keep the amount of the parameters in digit dependent i-vector
model is at the same level of traditional i-vector system.In
summary, we have four systems for comparison.

• GMM/i-vector: the conventional utterance-level GMM-
UBM i-vector system;

• SegGMM/i-vector: the segmental GMM-UBM i-vector
system built for each single digit;

• DNN/i-vector: the utterance-level DNN/i-vector system;
• SegDNN/i-vector: the proposed segmental DNN/i-vector

system built for each single digit.

C. Experiment results

Table I presents the performance of the four systems.
Note that the scores are computed as the cosine distance
between enrollment and test i-vectors and score normalization
are applied to all these systems. In general, the proposed
segmental i-vector systems perform better than the traditional
utterance level i-vector systems. Specifically, the EERs for
SegDNN/i-vector system are 4.75%/3.61% on female/male
data, improved by 17%/21% relatively compared to the tradi-
tional utterance level DNN/i-vector system. We believe that the
finer granularity modeling on the digit-level helps capture the
lexical variability and thus improves the performance. Table II
shows the performances of various backend methods applied

TABLE I
PERFORMANCE COMPARISON USING RSR PART 3 EVALUATION SET IN

EER (%) / DCF08*100.
System Female Male

GMM/i-vector 10.63/50.14 9.01/44.90
SegGMM/i-vector 7.28/38.60 6.13/27.33

DNN/i-vector 5.76/33.25 4.58/23.17
SegDNN/i-vector 4.75/27.18 3.61/15.99

TABLE II
COMPARISON OF BACKEND METHODS IN EER (%) / DCF08*100.

Backend Method Female Male
SegDNN/i-vector 4.75/27.18 3.61/15.99
SegDNN/i-vector + LDA 4.12/22.33 3.01/14.10
SegDNN/i-vector + LDA + CM 3.44/16.41 2.47/13.14
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TABLE III
RESULT COMPARISON WITH HILAM AND JFA IN EER (%) / DCF08*100.

System Female Male
HiLAM [8] 10.87/46.86 5.32/32.58
JFA-JDB [12] 4.54 /22.9 2.65/13.6
SegDNN/i-vector 3.44 /16.41 2.47/13.14

to the SegDNN/i-vector system. The length of digit i-vectors
is reduced from 40 to 25 after the LDA transformation, which
results in a better EER (4.12%/3.01% for female/male), indi-
cating that the backend methods for original utterance-level
i-vectors can also be applied to digit-level i-vectors before
they are concatenated for scoring. Finally, confidence measure
(CM) based i-vector weighting further improves the EER to
3.44%/2.47% for female/male. This may indicate that the CM-
based i-vector weighting is necessary for compensating the
uncertainty of the ASR system when segmenting the digits.
Fig. 2 shows the test DET curves for the three DNN/i-vector
systems for the female gender. We can see the EER reductions
with the proposed segmental DNN/i-vector approach and the
backend methods. Table III compares the performances of the
proposed system with two popular methods, i.e., HiLAM [8]
and JFA [12], on the same test condition. We can see that the
proposed SegDNN/i-vector approach achieves the lowest EER
and DCF08.

These experiments show the effectiveness of our system.
By modeling the variability for each digit independently, the
digit i-vectors can model both the speaker variabilities and the
lexical variabilities of the passphrase. This is essential in the
text-dependent speaker verification task. Digit-level i-vectors
can also make use of the important co-articulation information
within the digits, which is a weakness of the phone-dependent
local i-vector method. Besides, confidence measure plays a
major role in improving performance by compensating the
uncertainty while segmenting the digits.
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Fig. 2. DET curves on the female tests of RSR part 3.

V. CONCLUSIONS

In this paper, we proposed a segmental DNN/i-vector ap-
proach for digit-prompted verification task. The DNN/ivector
systems were built using a finer granularity on the digit level
rather than the sentence level for better lexical modeling.
Moreover, we also explored a confidence measure based i-
vector weighting method to compensate the uncertainty while
segmenting the digits. Experiments were conducted on the
text-prompted task of RSR2015. Experimental results show
that our best system gives an EER of 2.47% and 3.44% for
male and female genders respectively using the target-correct
and imposter-correct trials, a significant improvement over the
baseline utterance-level DNN/I-vector systems. The proposed
method of i-vector modeling in the word level can also be
applied to any other text-prompted speaker verification tasks.
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