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Abstract

Emotional voice conversion aims at converting speech from one
emotion state to another. This paper proposes to model tim-
bre and prosody features using a deep bidirectional long short-
term memory (DBLSTM) for emotional voice conversion. A
continuous wavelet transform (CWT) representation of funda-
mental frequency (FO) and energy contour are used for prosody
modeling. Specifically, we use CWT to decompose FO into a
five-scale representation, and decompose energy contour into a
ten-scale representation, where each feature scale corresponds
to a temporal scale. Both spectrum and prosody (FO and energy
contour) features are simultaneously converted by a sequence
to sequence conversion method with DBLSTM model, which
captures both frame-wise and long-range relationship between
source and target voice. The converted speech signals are e-
valuated both objectively and subjectively, which confirms the
effectiveness of the proposed method.

Index Terms: voice conversion, prosody, long short-term mem-
ory, recurrent neural networks

1. Introduction

Emotion, in everyday speech, is any relatively brief conscious
experience characterized by intense mental activity. Emotion is
often intertwined with mood, temperament, personality, dispo-
sition, and motivation, which play an important role in social
interaction and decision making [1, 2, 3]. Though emotions are
complex, vocal expression almost always accompanies an emo-
tional state to communicate reaction and intention of actions,
and speech signal contains rich information about emotion s-
tates [4]. Emotional voice conversion is a task of converting
speech from one emotion state into another one, while keeping
the basic linguistic and speaker information.

The most common speech characteristics include timbre
and prosody. The voice timbre is characterized by spectral
features, and prosody is concerned with those elements of
speech that are not individual phonetic segments (vowels and
consonants) but are properties of syllables and larger units of
speech [5]. Recently, there has been tremendous research in
emotional voice conversion and synthesis. Researchers are
particularly interested in the prosodic factors of speech, since
prosody reflects various features of the speaker including the e-
motional state. Tao et al. [6] tried to model FO contour using a
linear modification model, a Gaussian mixture model (GMM)
and a classification regression tree model for prosody conver-
sion from neutral speech to emotional speech. Zeynep et al. [7]
built a system that converted spectrum, FO and duration for
transforming the emotion in speech. The FO contour was mod-
eled and generated by context-sensitive syllable HMMs, dura-

tion was transformed using phone-based relative decision trees,
and spectrum was converted using a GMM-based method or a
codebook selection approach. Aihara e al. proposed GMM-
based emotional voice conversion applying both spectrum and
prosody features [8]. Later, they proposed an exemplar-based
emotional voice conversion approach based on non-negative
matrix factorization (NMF) [9], where parallel exemplars were
introduced to encode the source speech signal and synthesize
the target speech signal. Ming et al. proposed to use CWT
in FO modeling for emotional voice conversion [10]. Specifi-
cally, they decompose the fundamental frequency contour into
five temporal scales, which represent temporal changes ranging
from micro-prosody to the utterance level. The feature repre-
sentation of FO and spectrum are simultaneously converted in a
unified exemplar-based voice conversion framework.

Prosody features, including FO and energy contour, are
essential factors which significantly contribute to the under-
lying emotional state of a speech. It is widely agreed that
prosody is inherently supra-segmental and hierarchical in na-
ture [5, 11, 13, 14, 15]. Prosody conveys information that goes
beyond the sequence of segments, syllables, and words found
within an utterance, as well as beyond the lexical and syntac-
tic systems of a language [5, 16]. As prosody is affected by
both short term dependencies and long term dependencies, it is
hard to model the variations of FO in all temporal scales using
linear models. There were many attempts to explore multiple
temporal domains in prosody modeling, which seeks to mod-
el FO at different units like phone, syllable and phrase level-
s [12, 17, 18, 19]. Recently, the CWT has been proposed for
the analysis and modeling of FO in task of text to speech syn-
thesis [16, 20, 21] and voice conversion [10, 22]. The CWT
can effectively model FO in different temporal scales and sig-
nificantly improve the system performance.

In this paper, we propose to convert the spectrum, ener-
gy contour and fundamental frequency (FO) simultaneously un-
der a deep bidirectional LSTM recurrent neural network (RNN)
framework of emotional voice conversion. The DBLSTM ap-
proaches have shown promising results in sequence modeling
tasks, such as languages learning [23], speech recognition [24],
TTS synthesis [25] and voice conversion [26]. Prosody features
including CWT and logarithmic representation of FO and energy
contour are explored, and some interesting phenomena are fond.
Prosody and spectral features are converted simultaneously by
a sequence to sequence DBLSTM conversion method. The
bidirectional recurrent connections attempt to learn the con-
textual information in both forward and backward directions.
The memory blocks and peephole connections make it possible
to access long-range contextual, which elegantly capture both
frame-wised and long-range relationship between source and
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Figure 1: An example of the five-scale rep-
resentation of FO.

target prosody and spectral features. Due to the limited amount
of training data, we also propose to use an adaptation method,
which is to apply large amount of parallel data to train an aver-
age model to initialize the neural network.

The rest of this paper is organized as follow: In section 2,
we introduce the prosody and spectral features, which will be
used in conversion system. In section 3, we describe our method
for emotional voice conversion. In section 4, the objective and
subjective experiment results are presented. Conclusions are
drawn in section 5.

2. Spectral and Prosody Features

The speech parameters including spectrum, aperiodicity com-
ponent and fundamental frequency are extracted by applying
STRAIGHT [27] analysis method. Denote the spectrum as
SP € R"*M the energy of each frame is defined as

F
> SP?,, m=1,.,M, )
=1

where F' and M are feature dimension and number of frames re-
spectively. By calculating the energy for each frame of a speech
signal, we can obtain the energy contour vector e € R**

It is well known that prosody is influenced both at a
supra-segmental level, by long-term dependencies, and at a
segmental-level, by short-term dependencies. We adopt contin-
uous wavelet transform to decompose the FO and energy con-
tour into several temporal scales that model prosody at different
temporal levels. The wavelet method is sensitive to the gap-
s in the FO contour, therefore we apply a linear interpolation
method to obtain a continuous FO trajectory. The linear scale
FO and energy contour are transformed to the logarithmic scale,
and then normalized to zero mean and unit variance as required
by wavelet analysis.

The continuous wavelet transform of a input signal f(z) is
defined by

W(r,t) = 2 /00 fx)v (m—t) dz, 2)

.
where ) is the Mexican hat mother wavelet. We fix the anal-

ysis at 10 discrete scales, each one octave apart. Then f(z) is
represented by 10 separate components given by

Wilf,t) = Wi(f)(2" 7o, 6) (i + 2.5) /2, ©)

Figure 2: An example of the ten-scale representation of energy contour.
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Figure 3: The DBLSTM-RNN based voice conversion frame-
work.

where 7 = 1,...,10 and 79 = 5 ms. The original signal is ap-
proximately reconstructed by the following ad hoc reconstruc-
tion formula:

10
F&) =D Wi(f.t)(i +2.5) 7, 4)

For FO, attempting to relate the wavelet transform scales to lev-
els of linguistic structure [16, 21], adjacent scales are combined,
which result in a five-scale representation defined by

wi = Wai1(f, 1) + Wai(f, 1), )

where ¢ =1, ..., 5.

We denote the five-scale representation of FO and ten-scale
representation of energy as FO.w and E.y respectively. An ex-
ample of the representation of FO and energy contour are shown
in Fig. 1 and Fig. 2 respectively. The lower scales (high fre-
quencies) capture short-term variations and that higher scales
(low frequencies) capture long-term variations. To evaluate the
proposed method, we also propose to convert logarithmic scale
FO contour FO and logarithmic scale energy contour E under
the proposed framework.

3. LSTM Based Voice Conversion System
3.1. Basic Framework

Conventional RNNs can access only a limited range of contex-
t because of the vanishing gradient problem. Long short-term
memory (LSTM) take advantage of specially designed memory



cells which store information to overcome this limitation. The
proposed framework for prosody and spectral feature conver-
sion is shown in Fig. 3. The network architecture is a combi-
nation of bidirectional RNNs and LSTM memory block, which
can learn long-range contextual in both forward and backward
directions. By stacking multiple hidden layers, a deep network
architecture is built to capture high level representation of voice
features. In this system, features including Mel-cepstral coeffi-
cients (MCEPs), FO and energy contour features are concatenat-
ed to build a feature vector, and then the features in this vector
are simultaneously converted by the DBLSTM-RNN model.
For bidirectional RNNSs, the iteration functions for forward
sequence h and backward sequence h are as follows:

- -

he=HW, pae+Wyp heot +b3), (©)

— —

he=HW ¢xe+ Wes hpr + b)), (N
- —

Yo =Wp b + W hie + by, (®)

where x,y, h, t are the input, output, hidden state and time se-
quence respectively. For LSTM memory block, the recurrent
hidden layer function A is implemented according to the fol-
lowing equations:

1t = o(Waixe + Whihi—1 + Weice—1 + bs), &)
Jt =o(Wapze + Whihi—1 + Weici—1 + by), (10
¢t = free—1 + i tanh(Waexy + Whehe—1 + be),  (11)
0t = 0(Waowt + Whohi—1 + Weocr + bo), 12)
hi = o tanh(c), (13)

where i, f, o, c refer to the input gate, forget gate, output gate
and the element of cell C respectively, and o is the sigmoid
function.

3.2. Average Model Training and Adaptation

It is well known that deep neural network based methods require
large amount of training data to obtain good results. However,
in some application scenarios such as voice conversion, it is
hard to obtain large parallel data for training. Therefore, we
proposed to train an average model, which is to utilize parallel
data from other speakers to pre-train the network. The obtained
parameters should be at the neighborhood of the optimal solu-
tion, thus can be used as the initial values for training a network
which has limited training data.

In this work, the CMU-ARCTIC [28] database and some
data from corpus described in [29] are used for training the
average model. The number of training data is 13398 sen-
tences and the number of validation data is 2364 sentences.
Then the parameters of the trained average model are used to
initialize the neural network for emotion state conversion. A
machine learning library named CURRENNT [30] is used to
train the DBLSTM model. The number of units in each layer is
[64,96, 128, 96, 64] for prosody feature with CWT representa-
tion, and it is [51, 96, 128, 96, 51] for logarithmic scale prosody
feature respectively.

3.3. Spectral and Prosody Feature Conversion

In the conversion stage, input spectral and prosody features are
concatenated to build a feature vector. The features are normal-
ized to zero mean and unit variance, and then converted by the
BDLSTM-RNN methods described in 3.1. We do not convert

Table 1: Features converted by different systems.

Conversion Method | Converted Features | Adaptation

NMF SP, FOcwt NA
LSTM-1 SP Yes
LSTM-2 SP,Fo0 Yes
LSTM-3 SP,E Yes
LSTM-4 SP, FOcwt Yes
LSTM-5 SP, Ecwt Yes
LSTM-6 SP, FOcwt, Ecwt Yes
LSTM-7 SP, FOcwt, Ecwt No

the aperiodicity component and directly copy it to target to syn-
thesize the converted speech.

By reforming the components of converted features, we ob-
tain the converted spectral and prosody features SP¢, E¢,,, and
FO¢,.. The logarithmic scale converted FO and energy contour
are reconstructed according to Eq. (4). Then the mean and vari-
ance of the converted logarithmic scale FO and energy contour
are normalized to those of the target speaker. Finally, the ex-
ponential value of the logarithmic scale FO and energy contour
are calculated to obtain the converted FO and energy contour. In
order to make the energy contour of converted spectrum more
close to that of the target, we take advantage of the informa-
tion about converted energy e®. Firstly, we take the converted
spectrum SP¢ as input to calculate it’s energy contour e’ ac-
cording to Eq. (1). Then the energy ratio for each speech frame
is calculated as o

r=—, (14)
eC

where the divisions are element-wise, and r € R**™_ By repli-
cating the energy ratio vector, we get an energy ration matrix
R ¢ RF*M  Finally, the energy contour improved spectrum is
given by

SpP¢
= R 5
where the divisions are also element-wise.

SP* (15)

4. Experiments
4.1. Experimental Setup

The emotional speech corpus [29] is used in our experiment. To
collect high quality data, a professional actress was selected for
emotional data collection. The waveform is 16-bit quantization
at 16 kHz sampling rate. We use the speech of four emotions,
which are neural, happy, fear and sad from the corpus. The task
is to convert the neutral speech to another emotional speech.
For each conversion pair, 77 parallel utterances are randomly
selected as the training data, 13 utterances as the validation set
and another 10 utterances as the evaluation set. There is no
overlapping between the three sets.

The exemplar-based emotional voice conversion method
(denoted as NMF) described in [10] is applied as a baseline sys-
tem. Considering different feature combinations, the conducted
experiments on different systems are summarized in Table 1. In
systems where FO features are not listed, FO is linear converted
by normalize the mean and variance of source to target.

4.2. Objective Evaluation

We use Mel-cepstral distortion (MCD) to measure the spectral
distortion and mean square error (MSE) of logarithmic scale FO
to measure the FO distortion. The MCD between the converted



Table 2: MCD and FO-MSE results for different emotions.
MCD [dB] FO-MSE

Happy | Fear | Sad | Happy Fear Sad

Source 6.48 6.36 | 6.29 36.96 62.61 18.21

NMF 6.04 6.15 | 5.31 17.55 13.43 4.87
LSTM-1 5.35 5.28 | 4.72 20.00 13.17 4.29
LSTM-2 5.26 5.11 | 4.60 14.18 7.78 342
LSTM-3 8.96 7.41 4.79 20.00 13.17 4.29
LSTM-4 5.33 5.20 | 4.68 | 11.10 9.08 3.34
LSTM-5 5.29 529 | 4.73 20.00 13.17 4.29
LSTM-6 5.32 5.25 | 4.69 11.10 9.08 3.34
LSTM-7 5.45 543 | 4.89 20.55 15.17 4.76

Table 3: Subjective classification results for NMF system.

Target / Perception | Happy Fear Sad Neutral
Happy 46.5% | 20.5% 1.8% 31.2%

Fear 324% | 40.0% | 11.2% | 16.4%

Sad 0% 29% | 59.4% | 37.7%

and corresponding target Mel-ceptral is calculated as

24
10 Z ~
MOD[dB] = logilo 2 (Cm,d — Cm7d)27 (16)

where ¢, and ¢, are the m-th coefficients of the target and
converted MCCs, respectively. The MSE between the converted
and corresponding target logarithmic scaled FO is calculated as

1 & 7o) 2
MSE = N Z:ZI (log(FOi) - log(FOi)) , an

where F'0; and ﬁ)l represent the i-th elements of target and
converted vector of FO respectively, and N is the length of FO.
A lower MCD and FO-MSE value indicates smaller distortion
or prediction error.

The average MCD and FO-MSE results over all evaluation
pairs are reported in Table 2. We calculate MCD and FO-MSE
between the source speaker and the target speaker as a refer-
ence. For FO-MSE, we observe that converting the five-scale
representation of FO applying DBLSTM obtains best results for
Happy and Sad, and converting the logarithmic FO applying D-
BLSTM obtains best results for Fear. Comparing with linear
conversion (LSTM-1) or exemplar-based conversion (NMF),
we can say that the non-linear conversion (LSTM-2, LSTM-4)
of FO feature obtains much better results. Comparing LSTM-7
with LSTM-6, it is obvious that the proposed adaptation method
significantly improves the accuracy of predicted FO.

For MCD, we observe that system LSTM-2 obtains the best
results for all emotion states. System LSTM-3 which converts
logarithmic energy contour obtains the worst results, where the
MCD for Happy and Fear even bigger than the MCD between
source and target. Comparing system NMF with LSTM based
system, all LSTM based system get smaller MCD except sys-
tem LSTM-3. This results confirms that the non-linear DNN
method outperforms the linear exemplar-based method. Com-
paring system LSTM-6 with LSTM-7, the MCD decrease for
all emotion states after adaptation. Comparing system LSTM-
5 with LSTM-3, the MCD decrease for all emotion states with
CWT representation of energy contour, which confirms the ef-
fectiveness of using CWT for energy contour modeling.

Table 4: Subjective classification results for LSTM-2 system.
Target / Perception | Happy Fear Sad Neutral

Happy 435% | 224% | 82% 25.9%
Fear 7.1% | 76.4% | 12.9% 3.6%
Sad 1.8% 1.8% | 759% | 20.5%

Table 5: Subjective classification results for LSTM-4 system.
Target / Perception | Happy Fear Sad Neutral

Happy 66.7% | 2.8% | 2.8% | 277%
Fear 200% | 58.9% | 94% | 11.7%
Sad 0% 1.1% | 833% | 15.6%

Table 6: Subjective classification results for LSTM-6 system.
Target / Perception | Happy Fear Sad Neutral

Happy 771% | 41% | 12% | 17.6%
Fear 194% | 694% | 53% | 5.9%
Sad 18% | 06% | 70.6% | 27.0%

Table 7: Subjective classification results for LSTM-7 system.

Target / Perception | Happy Fear Sad Neutral
Happy 55.6% | 6.1 % 1.1% 37.2%

Fear 144% | 56.7% | 15.6% 13.3%

Sad 0.6% 06% | 77.7% | 21.1%

4.3. Subjective Evaluation

We conduct a subjective emotion classification test. In each test,
30 utterances (10 for Happy, 10 for Fear and 10 for Sad) are s-
elected and 18 experienced listeners are involved. The listeners
are asked to label a converted voice as Happy, Fear, Sad or Neu-
tral. As a sanity check, a subjective emotion classification test
for original recorded emotional speech utterances is first con-
ducted. Not surprisingly, all utterances are correctly classified
by the 18 listeners. According to the objective evaluation re-
sults and small scale listening test, the results of some systems,
such as LSTM-3, are obviously not good. Therefore, we on-
ly conduct subjective test for system NMF, LSTM-2, LSTM-4,
LSTM-6 and LSTM-7, and the results are shown in Table 3, 4,
5, 6, 7 respectively.

Comparing NMF system with LSTM based systems, it is
very clear that LSTM based methods obtains better results. It
is interesting that different feature combinations obtain good
results for different emotion states. Specifically, LSTM-2 ob-
tains best results for Fear, LSTM-4 obtains best results for Sad
and LSTM-6 obtains best results for Happy. Comparing with
LSTM-7, LSTM-6 increases the classification rate for Happy
and Fear significantly, but it slightly decreases the rate for Sad.
Considering both objective and subjective results, we can see
that the decrease of objective measures not always leads to bet-
ter classification results for some emotion states, which is an
interesting phenomenon.

5. Conclusions

We propose a method to convert spectral and prosody features
simultaneously in a DBLSTM-RNN based voice conversion
framework. An adaptation method is applied to improve the
system performance when there is a limited amount of train-
ing data. The CWT representation is proved to be effective for
modeling of FO and energy. The adaptation method significant-
ly improves system performance. Both objective and subjective
experiments confirm the effectiveness of the proposed method.
We will explore more prosody features in the future work.
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